Inhoudsopgave:
- Effectievere werving big data helpt te ontdekken welke kandidaten het meest geschikt zijn voor open posities. Een deel van het dataminingproces kan het verzamelen van informatie uit cv's en sociale mediaprofielen omvatten om duidelijker te identificeren welke potentiële medewerkers productiever kunnen zijn en diversiteit aan een werkplek toevoegen. Aanwervingsmanagers kunnen dan hun kandidaat-pool verfijnen en bepalen op welke evaluatiegebieden zij tijdens interviews moeten focussen. Door deze strategie te implementeren, gaat het wervingsproces sneller en worden de juiste mensen vaker aangenomen.
- Voorspellende analyses verminderen de mate van vooringenomenheid die optreedt bij het nemen van beslissingen die van invloed zijn op de prestaties van een bedrijf. Veel wervingsmanagers brengen bijvoorbeeld aan boord kandidaten die dezelfde eigenschappen hebben als hun topwerknemers. Omdat bestaande werknemers werden ingehuurd door dezelfde vooringenomen methoden, hebben organisaties doorgaans echter een tekort aan culturele en intellectuele diversiteit, wat het algehele succes van een bedrijf kan verminderen. Door modellen en benchmarks te creëren voor het scoren van werknemers en bedrijfsgebieden, kunnen bedrijven mogelijk beter bepalen welke werknemers en welke bijdragen het meest waardevol zijn voor de organisatie en voorspellende analyses gebruiken om duidelijker te bepalen welke werknemers kunnen uitblinken in hun posities.
- Big data helpt bij het verbeteren van de retentiegraad door te laten zien welke werknemers eerder weggaan en welke mogelijk verplaatst moeten worden naar een andere positie in de organisatie, worden gepromoot of het verkrijgen van een mentor als aanmoediging om bij te blijven het bedrijf. Dergelijke veranderingen vergroten vaak de betrokkenheid van het werk, de arbeidsvreugde en de productiviteit, zodat werknemers bij de organisatie blijven.
- Big data in HR helpt bedrijven tijd en geld te besparen bij het werven, aannemen en behouden van hun beste werknemers. Meer bedrijven zullen voorspellende analyses toepassen in hun bedrijfspraktijken, omdat organisaties steeds meer de waarde ervan inzien en de winst willen verbeteren.
Big data in human resources (HR) wordt steeds meer gebruikt voor het werven, aannemen en behouden van de beste medewerkers. Hier zijn drie redenen waarom meer bedrijven voorspellende analyses toepassen om de winst te verbeteren.
Effectievere werving big data helpt te ontdekken welke kandidaten het meest geschikt zijn voor open posities. Een deel van het dataminingproces kan het verzamelen van informatie uit cv's en sociale mediaprofielen omvatten om duidelijker te identificeren welke potentiële medewerkers productiever kunnen zijn en diversiteit aan een werkplek toevoegen. Aanwervingsmanagers kunnen dan hun kandidaat-pool verfijnen en bepalen op welke evaluatiegebieden zij tijdens interviews moeten focussen. Door deze strategie te implementeren, gaat het wervingsproces sneller en worden de juiste mensen vaker aangenomen.
Minder vastliggend zoeken
Voorspellende analyses verminderen de mate van vooringenomenheid die optreedt bij het nemen van beslissingen die van invloed zijn op de prestaties van een bedrijf. Veel wervingsmanagers brengen bijvoorbeeld aan boord kandidaten die dezelfde eigenschappen hebben als hun topwerknemers. Omdat bestaande werknemers werden ingehuurd door dezelfde vooringenomen methoden, hebben organisaties doorgaans echter een tekort aan culturele en intellectuele diversiteit, wat het algehele succes van een bedrijf kan verminderen. Door modellen en benchmarks te creëren voor het scoren van werknemers en bedrijfsgebieden, kunnen bedrijven mogelijk beter bepalen welke werknemers en welke bijdragen het meest waardevol zijn voor de organisatie en voorspellende analyses gebruiken om duidelijker te bepalen welke werknemers kunnen uitblinken in hun posities.
Een professional-servicesbedrijf dat jaarlijks 250.000 sollicitaties ontving, wilde de tijd en het geld dat werd besteed aan het beoordelen van cv's, de effectiviteit van het screeningproces verbeteren en meer vrouwen inhuren voor zijn personeelsbestand. Door gebruik te maken van voorspellende analyses, zorgde het algoritme voor eerdere cv's van de aanvrager, geïnterviewden die posities kregen aangeboden en diegenen die dit accepteerden. Het model koppelde de gegevens aan de wervingsdoelstellingen van het bedrijf, verengde de lijst met kandidaten die het meest waarschijnlijk bleken te uit te blinken in de open posities en verplaatste die cv's naar de volgende stap in het wervingsproces. Ongeveer 45% van de cv's werd uiteindelijk beoordeeld, 15% meer vrouwen vorderden in het screeningproces in vergelijking met het doorlopen van handmatige screening en de onderneming realiseerde een ROI (return on investment) van 500%.
Hogere retentiegraden
Big data helpt bij het verbeteren van de retentiegraad door te laten zien welke werknemers eerder weggaan en welke mogelijk verplaatst moeten worden naar een andere positie in de organisatie, worden gepromoot of het verkrijgen van een mentor als aanmoediging om bij te blijven het bedrijf. Dergelijke veranderingen vergroten vaak de betrokkenheid van het werk, de arbeidsvreugde en de productiviteit, zodat werknemers bij de organisatie blijven.
Bijvoorbeeld, Bank of America Corp. (NYSE: BAC
BACBank of America Corp27. 67-0.54% Created with Highstock 4. 2. 6 ) werknemers dragen identificatiekaarten met ingesloten sensoren voor het bewaken van interpersoonlijke interacties tussen de medewerkers van hun callcenter. Wells Fargo & Co. (NYSE: WFC WFCWells Fargo & Co56. 14-0.37% Created with Highstock 4. 2. 6 ) gebruikt voorspellende analyses om te bepalen welke kandidaten het meest geschikt zijn voor posities als stemopnemers en persoonlijke bankiers, al naar gelang de kandidaten de kenmerken bezitten van geëngageerde en goed presterende werknemers. Na een jaar van uitvoering van het programma nam het behoud van stemopnemers en persoonlijke bankiers toe met respectievelijk 15 en 12%. The Bottom Line
Big data in HR helpt bedrijven tijd en geld te besparen bij het werven, aannemen en behouden van hun beste werknemers. Meer bedrijven zullen voorspellende analyses toepassen in hun bedrijfspraktijken, omdat organisaties steeds meer de waarde ervan inzien en de winst willen verbeteren.
Hoe adviseurs grote gegevens kunnen gebruiken om een voorsprong te verwerven
Hier is hoe big data een cruciale rol speelt in het werkleven van financiële adviseurs en enkele strategieën over hoe u kunt profiteren van de technologie.
4 Dingen die u nooit zou moeten onthullen tijdens een sollicitatiegesprek
Een sollicitatiegesprek is een plaats om vaardigheden en capaciteiten te beschrijven die verband houden met het werk, geen persoonlijke informatie te delen die u zou kunnen diskwalificeren.
5 Verrassende dingen die je credit score schaden
Hier zijn vijf manieren waarop u uw credit score kunt beschadigen zonder het te weten.