Hoe gebruik ik de regel van 72 om continue samenstelling te berekenen?

51. Meerdere Regels Onder Elkaar in 1 Cel, Tekst Terugloop in Excel – Excel 2013 (November 2024)

51. Meerdere Regels Onder Elkaar in 1 Cel, Tekst Terugloop in Excel – Excel 2013 (November 2024)
Hoe gebruik ik de regel van 72 om continue samenstelling te berekenen?

Inhoudsopgave:

Anonim
a:

De regel van 72 is een wiskundige sneltoets die wordt gebruikt om te voorspellen wanneer een populatie, investering of andere groeiende categorie in omvang zal verdubbelen voor een bepaalde groeisnelheid. Het wordt ook gebruikt als een heuristisch apparaat om de aard van samengestelde rente aan te tonen. Door vele statistici is aanbevolen dat het getal 69 wordt gebruikt, in plaats van 72, om de resultaten van continue groeipercentagesnelheden te schatten. Bereken hoe snel continue samenstelling de waarde van uw investering verdubbelt door 69 te delen door de groeisnelheid.

De regel van 72 was eigenlijk gebaseerd op de regel van 69, en niet andersom. Voor niet-continue bereidingen is het getal 72 populairder omdat het meer factoren heeft en het terugverdienen gemakkelijker is.

Continuous Compounding

Bij finance verwijst continue compoundering naar een groeisnelheid met samengestelde periodes die oneindig klein zijn; de gegenereerde rente wordt bijvoorbeeld meer dan één keer per seconde berekend en samengesteld.

Omdat een investering met continue samenstelling sneller groeit dan een investering met eenvoudige of afzonderlijke samenstellingen, is de standaard tijdwaarde van geldberekeningen slecht toegerust om ermee te kunnen omgaan.

Regel van 72 en Samengesteld

De regel van 72 is afkomstig van een standaard samengestelde rente-formule: Toekomstige waarde = contante waarde x (1 - rentevoet) ^ (aantal perioden).

Met deze formule kunt u een toekomstige waarde vinden die exact twee keer zo hoog is als de huidige waarde. Doe dit door FV = 2 en PV = 1 te vervangen. Met een beetje calculus kun je ook vinden dat het natuurlijke log van (1 + rentepercentage) = rentepercentage is. Het blijkt dat dit natuurlijke logboek gelijk is aan 0. 693.

De vergelijking kan verder worden herschreven om het aantal tijdsperioden te isoleren: 0. 693 / rentepercentage = aantal perioden. Om de rentevoet een geheel getal te maken, vermenigvuldigt u beide zijden met 100. De laatste formule is dan 69. 3 / rentepercentage (percentage) = aantal perioden.

Het is niet zo eenvoudig om sommige getallen gedeeld door 69 te berekenen. 3, dus statistici en beleggers sloten af ​​op het dichtstbijzijnde gehele getal met vele factoren: 72. Dit creëerde de regel van 72 voor snelle schattingen van toekomstige waarden en bereidingen.

Continuous Compounding en de regel van 69 (. 3)

De veronderstelling dat het natuurlijke log van (1 + rentetarief) gelijk is aan de rentevoet is alleen waar, aangezien de rentevoet in oneindig kleine stapjes nul nadert. Met andere woorden, het is alleen onder doorlopende samenvoeging dat een investering in waarde verdubbeld onder de regel van 69.

Als u echt wilt berekenen hoe snel een investering zal verdubbelen voor een gegeven rentepercentage, gebruikt u de regel van 69.Meer in het bijzonder, gebruik de regel van 69. 3.

Stel dat een investering met een vaste rentevoet 4% garandeert en de groei voortdurend compenseert. Door de regel van 69. 3 formule toe te passen en 69. 3 te delen door 4, kunt u zien dat de initiële investering in waarde zou verdubbelen in 17. 325 jaar.